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o Consumers are exposed to a huge variety of products

o Computational constraints make it impossible for them to have access and
evaluate all available alternatives

e This impacts how sellers determine their product line and pricing decisions
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e Study a problem of product line design with informational frictions
e Build a simple model that
e considers limited computational capacity of consumers

e captures the tradeoff of increasing variety for the seller

e Focus on the design dimension of this problem

What | do

= | propose a model in which buyers cannot evaluate all available alternatives
presented by the seller

= Instead, they only sample some of the alternatives

= The main question is how the optimal menu/mechanism looks like here
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Spoiler alert!

Model: Mussa and Rosen (1978) +  boundedly rational buyers

!

unknown menu + sampling

e Screening menu + buyers observe menu entries at random
Single sample = optimal menu has size 1

e “Noise” could reduce variety

Two samples = optimal menu has size # 2
e Number of samples # number of offers in general

All results are up to measure zero cases
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Model

One seller and a continuum of buyers

Seller:

e Produces good of quality g at cost g2/2
e Designs a finite menu of quality-price pairs ( “offers”)

Buyers:

e Private valuation 6 € {0,,0y} with 6y >0, >0
e Fraction « has high valuation 0y

— If a buyer with valuation 6 accepts an offer (g, p) then he gets payoff g — p while
the seller gets p — g°/2

— If the buyer rejects the offer then both get zero
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Model

e Buyers will be boundedly rational and unable to observe (nor conjecture) the

menu offered by the seller

¢ Instead they will sample offers from the menu uniformly at random
e The number of samples is fixed
e Outside option (0, 0) is always available for consumers

¢ Since duplicating all offers makes no difference, | focus on menus with minimum

size



Timing

Seller designs menu

!

Buyers sample from the menu

!

Buyers decide whether to accept
one of the sampled offers
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Seller’s problem with a single sample

e Given a menu of size m, each offer will be observed with probability 1/m
¢ Since each buyer only draw a single sample, the only comparison they make is
with their outside option of rejecting the offer

e This implies that only “participation” constraints are relevant
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Main result with a single sample

Theorem
Consider the single sample problem with two valuations. The optimal menu includes
a single offer.

e Hence, in an environment with a single sample, the effective variety offered is
reduced
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e Then, if offer is accepted by 6’ > 6, optimal to match efficient quality provision for



Sketch of proof:

e Step 1: only “efficient” offers are included in the menu: (6, 0?) for some 0

e No incentive compatibility constraints since only single offer is observed each time
o |f offer with quality g is drawn, for which last type accepting is 8, optimal to price it

at p=0q
e Then, if offer is accepted by 6’ > 6, optimal to match efficient quality provision for

e Step 2: given that only offers of this form are offered optimal menu is determined

by a linear problem
e Solution involves assigning all mass to “best” offer only
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Optimal menu with a single sample (in pictures)
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(a) a < &: optimal menu offers
only g = 6, (red). All buyers
accept the offer.
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(b) a > &: optimal menu offers
only g = 6y (red). Only buyers
with valuation 6y accept the
offer.



Seller’s problem with two samples

e For a menu of size m, buyers will observe a single offer i with probability 1/m?,
and two offers j and k with probability 2/m?

o Since more than one alternative would be evaluated with positive probability
(unless all offers are identical), there would be relevant incentive compatibility
constraints to satisfy now

e This makes the characterization of the optimal menu challenging

e To guarantee existence, | assume that there is a limit M on the size of the menu

the seller could design, and consider the case in which M is large



Results with two samples

Lemma

Consider the problem with two samples. Suppose that the optimal menu contains
only two offers (qa, pa) and (qp, pp). Then, for M large enough, the expected profits
from menus {(qa, pa)} and {(qp, pp)} must be the same.

Proposition
Consider the problem with two samples and two valuations. Suppose M is large
enough, Then, the optimal menu does not contain only two offers.



Intuition behind Lemma

e Fix (qa, pa) and (gs, pp)

o Let R; the value generated for the seller if buyers observe i = a, b, ab
e Let x the probability a is drawn

o Consider the following problem for the seller
max x2 Ry + (1 — x)2Rp, + 2x(1 — x)Rap
X

e If exists, the interior solution is

R,
1+ bRb

e Note, x* =1/2 < R, =R,



Intuition behind Lemma

e A necessary condition is R, > max{R,, Rp} (i.e., there must be gains from using

a menu)
e Assume R; > Ry
e Starting from a menu only containing a, including b induces...
“Gain" R, — Rap
“Loss” R, — Rp
e x* balances this tradeoff

e If b drawn with small probability €, more likely to observe {a, b} instead of b only =
overall gain from including b

e If R, = Ry, no cost of including b, so optimal to maximize prob. of {a, b}

e If R, > Rp, then costly to include b and having both with same probability is too
costly = optimal to “bias” toward a
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From Lemma to Proposition and beyond

For two valuations and two samples, | could show that never optimal to set a and
b such that R, = Rp (up to a very specific set of parameters)

Lemma doesn’t depend on binary valuations

It could be extended beyond 2 samples directly

Extending the proposition to a more general structure is still work in progress



Heterogeneity in sample sizes

o What if there are consumers with one and two samples at the same time?

e |t can be shown that the problem is qualitatively similar to the case in which all
consumers have two samples

e Hence there is little loss on considering all consumers having the same sample size



Extension: Submenus with a single sample

Consider the possibility of offering small menus instead of single alternatives on

each draw.

A mechanism is now a collection of (sub)menus of quality-price pairs.

Each submenu has a limited size S.

Valuations are distributed over an interval [0, 0] according to some distribution
F.

We consider the case in which buyers sample only once.



Extension: Submenus with a single sample

Proposition
Consider the environment with finite-size submenus and a single sample. Suppose
Assumption 1 holds. Then, the optimal mechanism uses a single submenu.

e Same intuition as in main theorem:
e No IC implies each submenu must be optimal given submenu’s size
e Resulting problem is again a linear problem
e Hence, solution involves maximizing the probability of the best option (i.e.,
submenu).



Extension: Submenus with a single sample

Proposition
Consider the environment with finite-size submenus and a single sample. Suppose
Assumption 1 holds. Then, the optimal mechanism uses a single submenu.

e Same intuition as in main theorem:
e No IC implies each submenu must be optimal given submenu’s size
e Resulting problem is again a linear problem
e Hence, solution involves maximizing the probability of the best option (i.e.,
submenu).

Assumption 1: The optimal mechanism under full-consideration and a menu of
size up to S is unique.
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What is next?

= Full characterization for more than two samples

= Study the effect of competition on the seller’s problem
= Allow the seller to use targeted menus/ads

= Applications: taxes and social insurance systems
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